La estructura explica:
• La naturaleza de la secuencia lineal de los genes (información digital cuaternaria en secuencias unidimensionales de monómeros A,T,G,C)
• El mecanismo de replicación exacta de los genes.
• La naturaleza química de las mutaciones.
• Por qué la mutación, la recombinación y la expresión génica son fenómenos separables a nivel molecular.
Las propiedades más importantes del material genético son:
- A) Capacidad de almacenar información y transmitirla a la célula, controlando sus características estructurales y metabólicas.
- B) habilidad para transferir su información a las células hijas con un mínimo de errores.
- C) estabilidad fisicoquímica para que la información no se pierda.
- D) capacidad para cambios genéticos sin pérdida importante de la información progenitora.
2.1 ESTRUCTURA QUÍMICA Y FÍSICA DE LOS ÁCIDOS NUCLEICOS: ADN Y ARN.
Los ácidos nucleicos son macromoléculas poliméricas formadas por subunidades llamadas nucleótidos.
► Nucleotidos
Están formados por la unión de una base nitrogenada, una pentosa y una molécula de ácido fosfórico (H3 PO4)
▪ Bases nitrogenadas. Compuestos cíclicos formados por carbono y nitrógeno. Existen dos tipos:
▪ Bases pirimidínicas, derivadas de la pirimidina. Son la citosina (C), que se encuentra tanto en el ADN como en el ARN; la timina (T), que se presenta sólo en el ADN; y el uracilo (U), componente del ARN.
▪ Bases púricas, derivadas de la purina. Las más importantes son la adenina (A) y la guanina (G). Las dos en ambos tipos de ácidos nucleicos.
- Pentosa, ribosa en el ARN y desoxirribosa en el ADN.
- ·Ácido ortofosfórico (H3 PO4) se encuentran en forma de ion fosfato.
Nucleósido
La unión de una pentosa con una base nitrogenada forma un nucleósido. El enlace se forma entre el carbono anomérico del azúcar y uno de los nitrógenos de la base nitrogenada. En la unión se forma una molécula de agua. Este enlace recibe el nombre de enlace N-glucosídico. Si la pentosa es una ribosa, tenemos un ribonucleósido. Estos tienen como bases nitrogenadas la adenina, guanina, citosina y uracilo. Si la pentosa es un desoxirribosa, tenemos un desoxirribonucleósido. Estos tienen como bases nitrogenadas la adenina, citosina, guanina y timina. Se nombra añadiendo la terminación -osina, si derivan de una base púrica, o -idina, se ésta es pirimidínica, al nombre de la base que lo forma: adenosina, guanosina, citidina, timidina, etc. Si la pentosa es la desoxirribosa se antepone el prefijo desoxi-; por ejemplo, desoxiaguanosina, desoxicitidina, etc.
Los nucleótidos se forma por la unión de un nucleósido con el ácido fosfórico, esta se produce mediante la esterificación del azúcar por el ácido fosfórico. Es una unión fosfoéster entre un OH del ácido fosfórico y el OH situado en el carbono 5 del azúcar, con formación de una molécula de agua. Según el azúcar sea la ribosa o la desoxirribosa, tendremos ribonucleótidos odesoxirribonucleótidos.
La nomenclatura de los nucleótidos es compleja. Los nucleótidos se nombran como el nucleósido del que proceden eliminando la a final y añadiendo la terminación monofosfato, por ejemplo, adenosin monofosfato (AMP). Llevan el prefijo desoxi-, en el caso de estar formadas por la pentosa desoxirribosa. (dAMP).
Al grupo fosfato de los nucleótidos monofosfato puede unirse un segundo fosfato, y a éste un tercero, para formar los nucleótidos mono-, di- y trifosfatos (AMP, ADP y ATP),
La unión de dos nucleótidos mediante enlaces fosfodiester (entre el OH del ácido fosforito de un nucleótido y el OH del carbono 3' del siguiente formándose una molécula de agua) da lugar a un dinucleótido, si se une varios forman un polinucleótido. Los ácidos nucleicos son precisamente largas cadenas polinucleótidicas
METABOLISMO
El metabolismo es el conjunto de reacciones bioquímicas y procesos físico-químicos que ocurren en una célula y en el organismo.
La via anabolica es el proceso del metabolismo donde las enzimas une los enlaces de las micromoleculas creando una macromolecula y el ATP se mantiene
La via catabolica es el proceso del metabolismo donde las enzimas rompe los enlaces de las macromoleculas dando como resultados micromoleculas y el ATP se gasta.
Las enzimas son proteinas especificas que las regulan.
*Material genético*
M.G : Cualquier material de origen vegetal, animal o microbiano u otro que tenga información genética y que la transmita de una generación a la siguiente.
Esa información controla la reproducción, el desarrollo, el comportamiento, etc.NUCLEOTIDOS: Molécula constituída por una base nitrogenada, una pentosa y un grupo de ácido fosfórico. Es la unidad básica que compone los ácidos nucleicos.
ENLACES: es un tipo de enlace covalente que se produce entre un grupo hidroxilo en el carbono y un grupo fosfato en el carbono del nucleótido entrante, formándose así un doble enlace éster.
GENOMA: Es la secuencia de ADN contenida en 23 pares de cromosomas en el núcleo de cada célula humana diploide.
ADN: Es el material genético de casi todos los organismos vivos que controla la herencia y se localiza en el núcleo de las células. Es un ácido nucleico compuesto de dos tiras llamadas nucleótidos.
ARN: ácido nucleico formado por nucleótidos en los que el azúcar es ribosa, y las bases nitrogenadas son adenina, uracilo, citosina y guanina.
Material genético
La genética de una forma de vida orgánica y está almacenado en el núcleo de la célula. Para todos los organismos conocidos actualmente, el material genético es casi exclusivamente ácido desoxirribonucleico (ADN). Algunos virus usan ácido ribonucleico (ARN) como su código genético.
Se cree generalmente que el primer material genético fue el ARN, inicialmente manifestado por moléculas de ARN que autoreplicaban flotando en masas de agua. Este período hipotético en la evolución de la vida celular se llama la hipótesis del mundo de ARN. Esta hipótesis está basada en la capacidad del ARN de actuar como un material genético y como un catalizador, conocido como una ribozima. Sin embargo, cuando las proteínas (que pueden formar enzimas) llegaron a la existencia, la molécula más estable, el ADN, se convirtió en el material genético dominante, una situación que continúa hoy. La naturaleza de la doble cadena del ADN permite que las mutaciones se corrijan, y también el ARN es intrínsecamente inestable.
Las células modernas usan el ARN principalmente para construir proteínas de las instrucciones del ADN, en la forma de ARN mensajero, ARN ribosómico y ARN de transferencia.
El ARN y el ADN]son macromoléculas compuestas de nucleótidos (Son Polinucleótidos), de los cuales hay cuatro en cada molécula. Tres nucleótidos componen un codón, un tipo de "palabra genética", que es como un aminoácido en una proteína. La traducción codón-aminoácido se conoce como Traducción (genética).
Los cromosomas están Formados por la sustancia del ácido desoxirribonucleico o ADN. Cada característica del ser humano, como el color de ojos o la forma de las orejas, está codificada en una parte del ADN. Cada de una de estas partes se llama gen . que son pequeños fragmentos de cromosomas que portan la información para una característica determinada.
Duplicación Cromosómica
En Genética , una duplicación cromosómica es la repetición de un fragmento de cromosoma a continuación del fragmento original. Las duplicaciones surgen por error en la duplicación del ADN, como producto de una reorganización cromosómica de tipo estructural o relacionado con un proceso de sobrecruzamiento defectuoso. Las duplicaciones no suelen ser deletéreas, son una fuente de nuevo material genético y base para nuevos cambios evolutivos. Muchas de las familias génicas con un origen evolutivo común, o las familias multigénicas pueden tener su origen en las duplicaciones. Si el segmento afectado es de gran tamaño, se puede detectar en meiosis con los mismos criterios que en las deleciones (bivalente heteromorfo o zona intersticial desapareada en el cromosoma con la duplicación).
Las duplicaciones no suelen tener una manifestación fenotípica observable a simple vista, sino mediante análisis citogenéticos y moleculares.
Definición
Procesos que ocurren en varios organismo, mediante los cuales surge un nuevo gen; por ejemplo, la duplicación de un gen individual. En la duplicación genética contigua, la secuencia duplicada coexiste dentro de los límites establecidos por las señales de inicio y detención para síntesis de proteínas del original, lo cual origina un producto de transcripción y una proteína más grandes a expensas de la proteína existente.
Nota de Alcance
Usar para referirse al cambio cromosómico estructural que resulta en la duplicación de una sección del genoma de procariotes y eucariotes; USAR "genes duplicados" para referirse a genes que dan un resultado fenotípico idéntico.
TRANSCRIPCION GENETICA
La transcripción del ADN es el primer proceso de la expresión génica, mediante el cual se transfiere la información contenida en la secuencia del ADN hacia la secuencia de proteína utilizando diversos ARN como intermediarios. Durante la transcripción genética, las secuencias de ADN son copiadas a ARN mediante una enzima llamada ARN polimerasa que sintetiza un ARN mensajero que mantiene la información de la secuencia del ADN. De esta manera, la transcripción del ADN también podría llamarse síntesis del ARN mensajero.
Etapas de la transcripción:
Clásicamente se divide el proceso de la transcripción en 3 etapas principales (iniciación, elongación y terminación), pero realmente se pueden diferenciar 5 etapas :Preiniciación[editar]
Al contrario de la replicación de ADN, durante el inicio de la transcripción no se requiere la presencia de un cebador para sintetizar la nueva cadena, de ARN en este caso. Antes del inicio de la transcripción se necesita toda una serie de factores de transcripción que ejercen los factores de iniciación. Estos se unen a secuencias específicas de ADN para reconocer el sitio donde la transcripción ha de comenzar. Esta secuencia de ADN en la que se ensamblan los complejos de transcripción se llama promotor. Los promotores se localizan en los extremos 5'-terminales de los genes, antes del comienzo del gen, y a ellos se unen los factores de transcripción mediante fuerzas de Van der Waals y enlaces de hidrógeno. Los promotores tienen secuencias reguladoras definidas, muy conservadas en cada especie, donde las más conocidas son la caja TATA (situada sobre la región -10), con la secuencia consenso TATA(A/T)A(A/T); y la caja TTGACA (situada en el punto -35). La formación del complejo de transcripción se realiza sobre el promotor TATA, allí se forma el núcleo del complejo de iniciación. Sobre la caja TATA se fija una proteína de unión (TBP) junto con el factor de transcripción TFII D (TF proviene del inglés:transcription factor). Después, a ellos se unen otros factores de transcripción específicos: TFII B se une a TBP, TFII A (opcional), que estabiliza el complejo TFII B-TBP; luego se une el complejo TFII F y ARN polimerasa, y al final TFII E y TFII H. Todo ello forma un complejo que se llama «complejo de preiniciación cerrado» o PIC. Cuando la estructura se abre por mediación del factor de transcripción TFII H, da comienzo la iniciación y al «complejo abierto» (por su acción helicasa dependiente de ATP).
Iniciación
Primero, una Helicasa separa las hebras de ADN en estas denominadas cajas TATA, ya que entre adenina y timina se establecen dos enlaces de hidrógeno, mientras que entre citosina y guanina se forman tres. Posteriormente se unen los factores y las proteínas de transcripción (TBP, TF2D, TF2B) permitiendo, de esta manera, el acceso de la ARN polimerasa al molde de ADN de cadena simple, siendo esta la última en posicionarse. Aunque la búsqueda del promotor por la ARN polimerasa es muy rápida, la formación de la «burbuja de transcripción» o apertura del ADN y la síntesis del cebador es muy lenta. La burbuja de transcripción es una apertura de ADN desnaturalizado de 18 pares de bases, donde empieza a sintetizarse el ARN cebador a partir del nucleótido número 10 del ADN molde de la burbuja de transcripción. La burbuja de transcripción se llama «complejo abierto». La ARN polimerasa es una enzima formada por 5 subunidades: 2 subunidades α, 1 subunidad β, 1 subunidad β' y 1 subunidad ω que tiene como función la unión de ribonucleótidos trifosfato. Cuando se forma el complejo abierto, la ARN polimerasa comienza a unir ribonucleótidos mediante enlaces fosfodiéster, y una vez que se forma el primer enlace fosfodiéster, acaba la etapa de iniciación y comienza así la siguiente etapa.
Disgregación del promotor.
Una vez sintetizado el primer enlace fosfodiéster, se debe deshacer el complejo del promotor para que quede limpio para volver a funcionar de nuevo. Durante esta fase hay una tendencia a desprenderse el transcrito inicial de ARN y producir transcritos truncados, dando lugar a una iniciación abortada, común tanto en procariontes como eucariontes. Una vez que la cadena transcrita alcanza una longitud de unos 23 nucleótidos, el complejo ya no se desliza y da lugar a la siguiente fase, la elongación.
La disgregación del promotor coincide con una fosforilación de la serina 5 del dominio carboxilo terminal de la ARN polimerasa, que es fosforilado por el TFII H (que es una proteína quinasa dependiente de ATP).
Elongación
La ARN polimerasa cataliza la elongación de cadena del ARN. Una cadena de ARN se une por apareamiento de bases a la cadena de ADN, y para que se formen correctamente los enlaces de hidrógeno que determina el siguiente nucleótido del molde de ADN, el centro activo de la ARN polimerasa reconoce a los ribonucleótidos trifosfato entrantes. Cuando el nucleótido entrante forma los enlaces de hidrógeno idóneos, entonces la ARN polimerasa cataliza la formación del enlace fosfodiéster que corresponde. A esto se le llama elongación, la segunda etapa de la transcripción del ARN.
Terminación
Al finalizar la síntesis de ARNm, esta molécula ya se ha separado completamente del ADN (que recupera su forma original) y también de la ARN polimerasa, terminando la transcripción. La terminación es otra etapa distinta de la transcripción, porque justo cuando el complejo de transcripción se ha ensamblado activamente debe desensamblarse una vez que la elongación se ha completado. La terminación está señalizada por la información contenida en sitios de la secuencia del ADN que se está transcribiendo, por lo que la ARN polimerasa se detiene al transcribir algunas secuencias especiales del ADN. Estas secuencias son ricas en guanina y citosina, situadas en el extremo de los genes, seguidas de secuencias ricas en timina, formando secuencias palindrómicas, que cuando se transcriben el ARN recién sintetizado adopta una «estructura en horquilla» que desestabiliza el complejo ARN-ADN, obligando a separarse de la ARN polimerasa, renaturalizándose la burbuja de transcripción. Algunas secuencias de ADN carecen de la secuencia de terminación, sino que poseen otra secuencia a la que se unen una serie de proteínas reguladoras específicas de la terminación de la transcripción como rho.
mutacion genética
En Genética se denomina mutación genética, mutación molecular o mutación puntual a los cambios que alteran la secuencia de nucleótidos del ADN. No confundir con una mutación génica que se refiere a una mutación dentro de un gen. Estas mutacionesen la secuencia del ADN pueden llevar a la sustitución de aminoácidos en las proteínas resultantes. Un cambio en un solo aminoácido puede no ser importante si es conservativo y ocurre fuera del sitio activo de la proteína. De lo contrario puede tener consecuencias severas, como por ejemplo:
La sustitución de valina por ácido glutámico en la posición 6 de la cadena polipéptidica de la beta-globina da lugar a la enfermedad anemia falciforme en individuos homocigóticos debido a que la cadena modificada tiene tendencia a cristalizar a bajas concentraciones de oxígeno.
Las proteínas del colágeno constituyen una familia de moléculas estructuralmente relacionadas que son vitales para la integridad de muchos tejidos, incluidos los huesos y la piel. La molécula madura del colágeno está compuesta por 3 cadenas polipeptídicas unidas en una triple hélice. Las cadenas se asocian primero por su extremo C-terminal y luego se enroscan hacia el extremo N-terminal. Para lograr este plegado, las cadenas de colágeno tienen una estructura repetitiva de 3 aminoácidos: glicina - X - Y (X es generalmente prolina y Y puede ser cualquiera de un gran rango de aminoácidos). Una mutación puntual que cambie un solo aminoácido puede distorsionar la asociación de las cadenas por su extremo C-terminal evitando la formación de la triple hélice, lo que puede tener consecuencias severas. Una cadena mutante puede evitar la formación de la triple hélice, aún cuando haya 2 monómeros de tipo salvaje. Al no tratarse de una enzima, la pequeña cantidad de colágeno funcional producido no puede ser regulada. La consecuencia puede ser la condición dominante letal osteogénesis imperfecta.
Entre las mutaciones genéticas podemos distinguir:
Mutación silenciosa o sinónima: no se produce cambio de aminoácido.
Mutación por sustitución de bases: Se producen al cambiar en una posición un par de bases por otro (son las bases nitrogenadas las que distinguen los nucleótidos de una cadena). Distinguimos dos tipos que se producen por diferentes mecanismos bioquímicos:
Mutaciones transicionales o simplemente transiciones, cuando un par de bases es sustituido por su alternativa del mismo tipo. Las dos bases púricas son adenina (A) y guanina (G), y las dos pirimídicas son citosina (C) y timina (T). La sustitución de un par AT, por ejemplo, por un par GC, sería una transición.
Mutaciones transversionales o transversiones, cuando un par de bases es sustituida por otra del otro tipo. Por ejemplo, la sustitución del par AT por TA o por CG.
Si los cambios dan lugar a un nuevo aminoácido, será una mutación no sinónima, pero si la mutación es neutra habrá ninguna ventaja selectiva.
Mutaciones de corrimiento , cuando se añaden o se quitan pares de nucleótidos alterándose la longitud de la cadena. Si se añaden o quitan pares en un número que no sea múltiplo de tres (es decir si no se trata de un número exacto de codones), las consecuencias son especialmente graves, porque a partir de ese punto, y no sólo en él, toda la información queda alterada. Hay dos casos:
Mutación por pérdida o deleción de nucleótidos: En la secuencia de nucleótidos se pierde uno y la cadena se acorta en una unidad.
Mutación por inserción de nuevos nucleótidos: Dentro de la secuencia del ADN se introducen nucleótidos adicionales, interpuestos entre los que ya había, alargándose correspondientemente la cadena.
Además pueden dar lugar a mutaciones sin sentido si se introduce un codón de terminación.
Mutaciones en los sitios de corte y empalme (Splicing)
Las mutaciones de corrimiento del marco de lectura también pueden surgir por mutaciones que interfieren con el splicing del ARN mensajero. El comienzo y final de cada intrón en un gen están definidos por secuencias conservadas de ADN. Si un nucleótido muta en una de las posiciones altamente conservada, el sitio no funcionará más, con las consecuencias predecibles para el ARNm maduro y la proteína codificada. Hay muchos ejemplos de estas mutaciones, por ejemplo, algunas mutaciones en el gen de la beta globina en la beta talasemia son causadas por mutaciones de los sitios de splicing.
Traducción (genética)
La traducción es el segundo proceso de la síntesis proteica (parte del proceso general de la expresión génica). La traducción ocurre tanto en el citoplasma, donde se encuentran los ribosomas, como también en el retículo endoplasmático rugoso (RER). Los ribosomas están formados por una subunidad pequeña y una grande que rodean al ARN. En la traducción, el ARN mensajero se decodifica para producir un polipéptido específico de acuerdo con las reglas especificadas por el código genético. Es el proceso que convierte una secuencia de ARNm en una cadena de aminoácidos para formar una proteína. Es necesario que la traducción venga precedida de un proceso de transcripción. El proceso de traducción tiene tres fases: iniciación, elongación y terminación (entre todos describen el crecimiento de la cadena de aminoácidos, o polipéptido, que es el producto de la traducción).
La iniciación Primero, una Helicasa separa las hebras de ADN en estas denominadas cajas TATA, ya que entre adenina y timina se establecen dos enlaces de hidrógeno, mientras que entre citosina y guanina se forman tres. Posteriormente se unen los factores y las proteínas de transcripción (TBP, TF2D, TF2B) permitiendo, de esta manera, el acceso de la ARN polimerasa al molde de ADN de cadena simple, siendo esta la última en posicionarse. Aunque la búsqueda del promotor por la ARN polimerasa es muy rápida, la formación de la «burbuja de transcripción» o apertura del ADN y la síntesis del cebador es muy lenta. La burbuja de transcripción es una apertura de ADN desnaturalizado de 18 pares de bases, donde empieza a sintetizarse el ARN cebador a partir del nucleótido número 10 del ADN molde de la burbuja de transcripción. La burbuja de transcripción se llama «complejo abierto». La elongación La ARN polimerasa cataliza la elongación de cadena del ARN. Una cadena de ARN se une por apareamiento de bases a la cadena de ADN, y para que se formen correctamente los enlaces de hidrógeno que determina el siguiente nucleótido del molde de ADN, el centro activo de la ARN polimerasa reconoce a los ribonucleótidos trifosfato entrantes La terminación del polipéptido sucede Al finalizar la síntesis de ARNm, esta molécula ya se ha separado completamente del ADN (que recupera su forma original) y también de la ARN polimerasa, terminando la transcripción.

No hay comentarios:
Publicar un comentario